

Technical documentation

PCA9554

ZHCSNJ2D - JULY 2006 - REVISED MARCH 2021

具有中断输出和配置寄存器的 PCA9554 远程 8 位 I2C 和 SMBus I/O 扩展器

1 特性

Texas

I²C 至并行端口扩展器 •

INSTRUMENTS

- 开漏电路低电平有效中断输出
- 2.3 V 至 5.5 V 的工作电源电压范围
- 耐受 5V 电压的 I/O
- 400kHz 快速 I²C 总线
- 3个硬件地址引脚可在 I²C/SMBus 上支持最多 8 个 器件
- 输入/输出配置寄存器 ٠
- 极性反转寄存器 •
- 内部加电复位
- 所用通道在加电时被配置为输入 •
- 在加电时无毛刺脉冲
- 针对直接驱动 LED 的具有高电流驱动最大能力的锁 存输出
- 锁断性能超过 100mA,符合 JESD 78 Ⅱ 类规范的 要求)
- ESD 保护性能超过 JESD 22 规范要求
 - 2000V 人体放电模型 (A114-A)
 - 200V 机器放电模型 (A115-A)
 - 1000V 带电器件模型 (C101)

2 说明

这个用于两线双向总线 (I2C) 的 8 位 I/O 扩展器设计用 于在 2.3V 至 5.5V VCC 之间运行。通过 I²C 接口 [串 行时钟 (SCL), 串行数据 (SDA)], 它为大多数微控制 器系列产品提供通用远程 I/O 扩展。

PCA9554 包含一个 8 位配置 (输入或输出可选)、输 入、输出和极性反转(高电平有效或低电平有效)寄存 器。加电时, I/O 被配置为到 V_{CC} 的弱上拉输入。但 是,系统主控制器可以通过写入 I/O 配置位将 I/O 启用 为输入或输出。每个输入或输出的数据均保存在相应的 输入或输出寄存器中。输入端口寄存器的极性可借助极 性反转寄存器进行转换。所有寄存器都可由系统主控器 读取。

发生超时或其他不当操作时,系统主控器可通过使用上 电复位功能,将寄存器置于其默认状况并初始化 I2C/ SMBus 状态机来复位 PCA9554。

PCA9554 开漏中断 (INT) 输出在任意输入状态与其对 应的输入端口寄存器状态不同时被激活,并用于向系统 主控器指明输入状态已改变。

器件信息(1)

器件型号	封装	封装尺寸(标称值)					
PCA9554	SSOP (16)	6.20mm x 5.30mm					
	VQFN (16)	4.00mm x 4.00mm					
	四方扁平无引线 (QFN) (16)	3.00mm × 3.00mm					

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 (1)

录。 DB, DBQ, DGV, DW, OR PW PACKAGE **RGV PACKAGE** RGT PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) V_{CC} SDA Ā A1 A0 SDA 16 🛛 V_{CC} A0 16 15 14 13 A1 15 SDA 16 15 14 13 A2 SCL 12 A2 Пз 14 SCL A2 12 SCL INT P0 2 11 P0 11 INT P0 13 🛛 INT 4 2 P7 3 P1 P1 5 12 P7 P1 10 3 10 P7 P2 P6 9 P2 6 11 P6 P2 P6 4 9 6 7 8 5 10 P5 P3 7 6 7 8 5 GND P4 P5 Б GND 8 9 P4 GND Б Ρ4 P5

Table of Contents

1 特性	1
2 说明	1
3 Revision History	2
4 Description (Continued)	3
5 Pin Configuration and Functions	4
6 Specifications	5
6.1 Absolute Maximum Ratings	5
6.2 ESD Ratings	5
6.3 Recommended Operating Conditions	5
6.4 Thermal Information	6
6.5 Electrical Characteristics	6
6.6 I ² C Interface Timing Requirements	8
6.7 Switching Characteristics	8
6.8 Typical Characteristics	9
7 Parameter Measurement Information	. 11
8 Detailed Description	14

	8.1 Functional Block Diagram	.14
	8.2 Device Functional Modes	.15
	8.3 Programming	16
9	Application Information Disclaimer	.22
	9.1 Application Information	
1() Power Supply Recommendations	
	10.1 Power-On Reset Requirements	
11	Device and Documentation Support	
	11.1 Receiving Notification of Documentation Updates.	.26
	11.2 Support Resources	
	11.3 Trademarks	
	11.4 Electrostatic Discharge Caution	.26
	11.5 Glossary	.26
12	2 Mechanical, Packaging, and Orderable	
	Information	26

3 Revision History

CI	nanges from Revision C (May 2021) to Revision D (March 2021) Page	ge
•	Moved the "Storage temperature range" to the Absolute Maximum Ratings	. 5
•	Moved the "Package thermal impedance" to the Thermal Resistance Characteristic	
•	Changed the V _{IH} High-level input voltage (SDL, SDA) Max value From: 5.5 V To: V _{CC} in the <i>Recommended Operating Conditions</i>	.5
•	Changed the V _{IH} High-level input voltage (A0, A1, A2, P7 - P0) MIN value From: 5.5 V To: 0.7 x V _{CC} in the <i>Recommended Operating Conditions</i>	5
•	Changed the V _{IL} Low-level input voltage (A0, A1, A2, P7 - P0) MAX value From: 0.8 V To: 0.3 x V _{CC} in the <i>Recommended Operating Conditions</i>	
•	Added the Thermal Information table	. 6
•	Changed V _{PORR} in the <i>Electrical Characteristics</i>	.6
•	Added V _{PORF} to the <i>Electrical Characteristics</i>	. 6
•	Changed the I _{CC} Standby mode values in the <i>Electrical Characteristics</i>	
•	Changed the Ci SCL Max value From: 5 pF To: 8 pF in the <i>Electrical Characteristics</i>	
•	Changed the Cio SDA Max value From: 6.5 pF To: 9.5 pF in the <i>Electrical Characteristics</i>	
•	Changed the t _{pv} Output data valid MAX values From: 200 ns To 350 ns in the Swirtching Characteristics	
•	Changed the Typical Characteristics graphs	
•	Changed the Power Supply Recommendations	

CI	hanges from Revision B (August 2008) to Revision C (May 2014)	Page
•	Added Interrupt Errata section	16

4 Description (Continued)

 $\overline{\text{INT}}$ can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C bus. Thus, the PCA9554 can remain a simple slave device.

The device's outputs (latched) have high-current drive capability for directly driving LEDs and low current consumption.

Three hardware pins (A0, A1, and A2) are used to program and vary the fixed I^2C address and allow up to eight devices to share the same I^2C bus or SMBus.

The PCA9554 is pin-to-pin and I^2C address compatible with the PCF8574. However, software changes are required, due to the enhancements in the PCA9554 over the PCF8574.

The PCA9554 and PCA9554A are identical except for their fixed I^2C address. This allows for up to 16 of these devices (eight of each) on the same I^2C/SMB us.

5 Pin Configuration and Functions

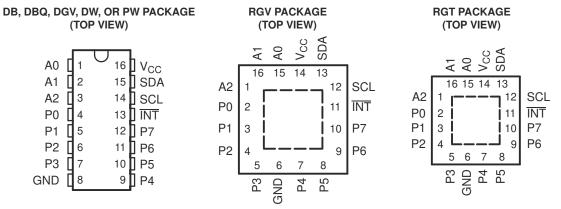


表 5-1. Pin Functions

	PIN		
NAME	QSOP (DBQ) SOIC (DW), SSOP (DB), TSSOP (PW), AND TVSOP (DGV)	QFN (RGT) AND QFN (RGV)	DESCRIPTION
A0	1	15	Address input. Connect directly to V _{CC} or ground.
A1	2	16	Address input. Connect directly to V _{CC} or ground.
A2	3	1	Address input. Connect directly to V _{CC} or ground.
P0	4	2	P-port input/output. Push-pull design structure.
P1	5	3	P-port input/output. Push-pull design structure.
P2	6	4	P-port input/output. Push-pull design structure.
P3	7	5	P-port input/output. Push-pull design structure.
GND	8	6	Ground
P4	9	7	P-port input/output. Push-pull design structure.
P5	10	8	P-port input/output. Push-pull design structure.
P6	11	9	P-port input/output. Push-pull design structure.
P7	12	10	P-port input/output. Push-pull design structure.
INT	13	11	Interrupt output. Connect to V_{CC} through a pullup resistor.
SCL	14	12	Serial clock bus. Connect to V_{CC} through a pullup resistor.
SDA	15	13	Serial data bus. Connect to V_{CC} through a pullup resistor.
V _{CC}	16	14	Supply voltage

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		- 0.5	6	V
VI	Input voltage range ⁽²⁾		- 0.5	6	V
Vo	Output voltage range ⁽²⁾			6	V
I _{IK}	Input clamp current	V ₁ < 0		- 20	mA
I _{ОК}	Output clamp current	V _O < 0		- 20	mA
I _{IOK}	Input/output clamp current	$V_{\rm O}$ < 0 or $V_{\rm O}$ > $V_{\rm CC}$		±20	mA
I _{OL}	Continuous output low current	$V_{O} = 0$ to V_{CC}		50	mA
I _{OH}	Continuous output high current	$V_{O} = 0$ to V_{CC}		- 50	mA
1	Continuous current through GND			- 250	mA
I _{CC}	Continuous current through V_{CC}			160	mA
T _{stg}	Storage temperature range		- 65	150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

				MIN	MAX	UNIT
	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	0	2000	V	
	V _(ESD)	Liectrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	0	1000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2.3	5.5	V
VIH	High-level input voltage	SCL, SDA	0.7 × V _{CC}	V _{CC} ⁽¹⁾	V
VIН	High-level liput voltage	A2 - A0, P7 - P0	2	V _{CC}	v
V	Low-level input voltage	SCL, SDA	- 0.5	0.3 × V _{CC}	V
VIL		A2 - A0, P7 - P0	- 0.5	0.3 × V _{CC}	
I _{OH}	High-level output current	P7 - P0		- 10	mA
I _{OL}	Low-level output current	P7 - P0		25	mA
T _A	Operating free-air temperature		- 40	85	°C

(1) For voltages applied above V_{CC} , an increase in ICC will result.

6.4 Thermal Information

				PCA9538			
THERMAL METRIC ⁽¹⁾		DB (SSOP)	DBQ (SSOP)	DGV (TVSOP)	DW (SOIC)	PW (TSSOP)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	113.2	121.7	120	57	63.2	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}	Input diode clamp voltage	I _I = - 18 mA	2.3 V to 5.5 V	- 1.2			V
V _{PORR}	Power-on reset voltage, V _{CC} rising	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$			1.2	1.5	V
V _{PORF}	Power-on reset voltage, V _{CC} falling	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$		0.75	1		V
			2.3 V	1.8			
		l = 0 m A	3 V	2.6			
		I _{OH} = -8 mA	4.5 V	3.1			
V	P-port high-level output		4.75 V	4.1			V
V _{OH}	voltage ⁽²⁾	I _{OH} = - 10 mA	2.3 V	1.7			V
			3 V	2.5			
			4.5 V	3			
			4.75 V	4			
	SDA	V _{OL} = 0.4 V	2.3 V to 5.5 V	3	8		
		V _{OL} = 0.5 V	2.3 V	8	10		
			3 V	8	14		
			4.5 V	8	17		
	D == =================================		4.75 V	8	35		
l _{oL}	P port ⁽³⁾		2.3 V	10	13		mA
			3 V	10	19		
		V _{OL} = 0.7 V	4.5 V	10	24		
			4.75 V	10	45		
	INT	V _{OL} = 0.4 V	2.3 V to 5.5 V	3	10		
	SCL, SDA					±1	
l _l	A2 - A0	$V_{I} = V_{CC}$ or GND	2.3 V to 5.5 V			±1	μA
IIH	P port	$V_{I} = V_{CC}$	2.3 V to 5.5 V			1	μA
IIL	P port	V _I = GND	2.3 V to 5.5 V			- 100	μA

6.5 Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
I _{CC}			5.5 V		104	175	
		$V_I = V_{CC}$, $I_O = 0$, $I/O = inputs$, $f_{scl} = 400 \text{ kHz}$, No load	3.6 V		50	90	
	Operating mode	·sci ·····	2.7 V		20	65	
	Operating mode		5.5 V		60	150	
		$V_I = V_{CC}$, $I_O = 0$, $I/O = inputs$, $f_{scl} = 100 \text{ kHz}$, No load	3.6 V		15	40	
			2.7 V		8	20	
	Standby mode		5.5 V		450	700	μA
		V _I = GND, I _O = 0, I/O = inputs, f _{scl} = 0 kHz, No load	3.6 V		300	600	
			2.7 V		225	500	
		$V_{I} = V_{CC}$, $I_{O} = 0$, $I/O = inputs$, $f_{scl} = 0$ kHz, No load	5.5 V		1.9	3.5	
			3.6 V		1.1	1.8	
			2.7 V		1	1.6	
	Additional current in	One input at V_{CC} - 0.6 V, Other inputs at V_{CC} or GND	2.3 V to 5.5 V			1.5	mA
ΔI_{CC}	standby mode	Every LED I/O at V _I = 4.3 V, f _{scl} = 0 kHz	5.5 V			1	ma
Ci	SCL	V _I = V _{CC} or GND	2.3 V to 5.5 V		4	8	pF
C	SDA		2.3 V to 5.5 V		5.5	9.5	pF
Cio	P port	$V_{IO} = V_{CC}$ or GND	2.3 V 10 5.5 V		8	9.5	μr

All typical values are at nominal supply voltage (2.5-V, 3.3-V, or 5-V V_{CC}) and T_A = 25°C. The total current sourced by all I/Os must be limited to 85 mA. (1) (2)

(3) Each I/O must be externally limited to a maximum of 25 mA, and the P port (P0 to P7) must be limited to a maximum current of 200 mA.

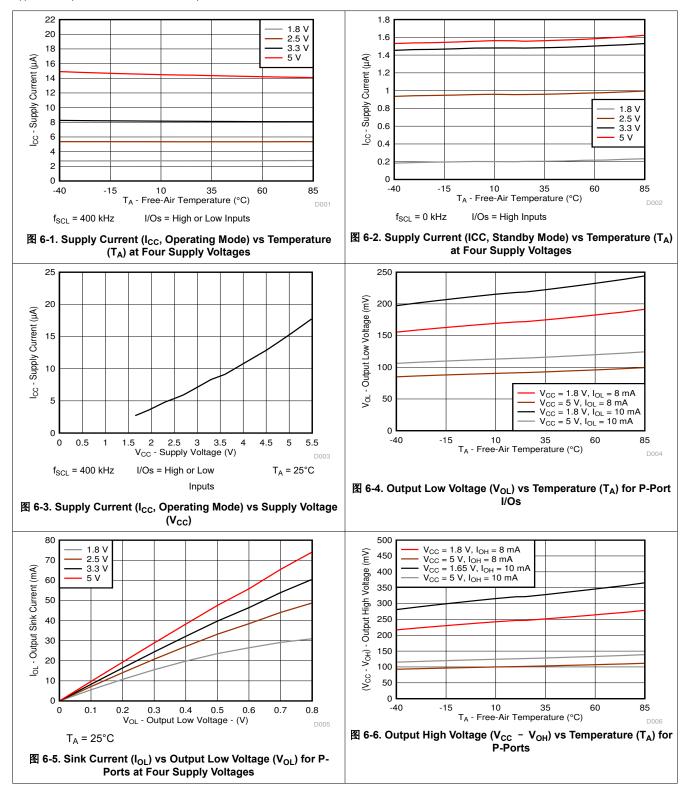
6.6 I²C Interface Timing Requirements

over operating free-air temperature range (unless otherwise noted) (see 图 7-1)

			STANDARD I I ² C BUS	-	FAST MODE I ² C BUS	•	UNIT
			MIN	MAX	MIN	MAX	
f _{scl}	I ² C clock frequency		0	100	0	400	kHz
t _{sch}	I ² C clock high time		4		0.6		μ S
t _{scl}	I ² C clock low time		4.7		1.3		μs
t _{sp}	I ² C spike time			50		50	ns
t _{sds}	I ² C serial-data setup time		250		100		ns
t _{sdh}	I ² C serial-data hold time		0		0		ns
t _{icr}	I ² C input rise time			1000	20 + 0.1C _b ⁽¹⁾	300	ns
t _{icf}	I ² C input fall time			300	20 + 0.1C _b ⁽¹⁾	300	ns
t _{ocf}	I ² C output fall time	10-pF to 400-pF bus		300	20 + 0.1C _b ⁽¹⁾	300	ns
t _{buf}	I ² C bus free time between stop an	d start	4.7		1.3		μ s
t _{sts}	I ² C start or repeated start conditio	n setup	4.7		0.6		μs
t _{sth}	I ² C start or repeated start conditio	n hold	4		0.6		μ s
t _{sps}	I ² C stop condition setup		4		0.6		μ s
t _{vd(data)}	Valid data time	SCL low to SDA output valid	300		50		ns
t _{vd(ack)}	Valid data time of ACK condition	ACK signal from SCL low to SDA (out) low	0.3	3.45	0.1	0.9	μ S
C _b	I ² C bus capacitive load	·		400		400	ns

(1) C_b = Total capacitive load of one bus in pF

6.7 Switching Characteristics


over operating free-air temperature range (unless otherwise noted) (see 图 7-2 and 图 7-3)

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	STANDARD MODE I ² C BUS	FAST MODE I ² C BUS	UNIT
				MIN MAX	MIN MAX	
t _{iv}	Interrupt valid time	P port	INT	4	4	μs
t _{ir}	Interrupt reset delay time	SCL	INT	4	4	μs
t _{pv}	Output data valid	SCL	P7 - P0	350	350	ns
t _{ps}	Input data setup time	P port	SCL	100	100	ns
t _{ph}	Input data hold time	P port	SCL	1	1	μ s

6.8 Typical Characteristics

 $T_A = 25^{\circ}C$ (unless otherwise noted)

6.8 Typical Characteristics (continued)

T_A = 25°C (unless otherwise noted)

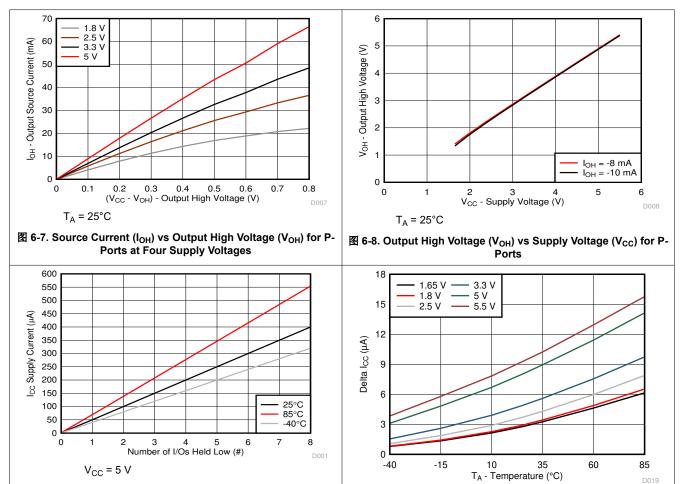
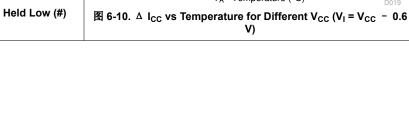
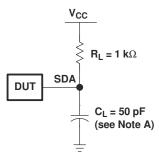
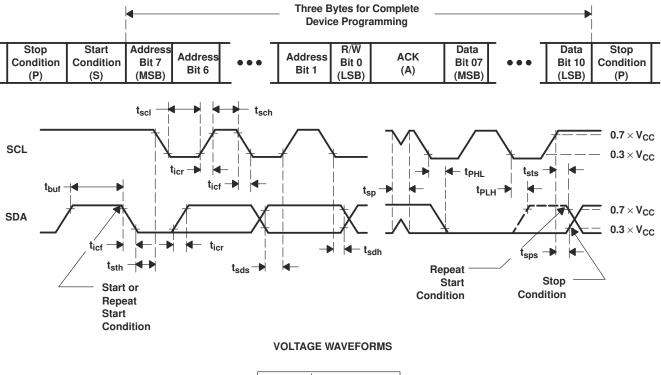




图 6-9. Supply Current (I_{CC}) vs Number of I/Os Held Low (#)



7 Parameter Measurement Information

SDA LOAD CONFIGURATION

BYTE	DESCRIPTION
1	I ² C address
2, 3	P-port data

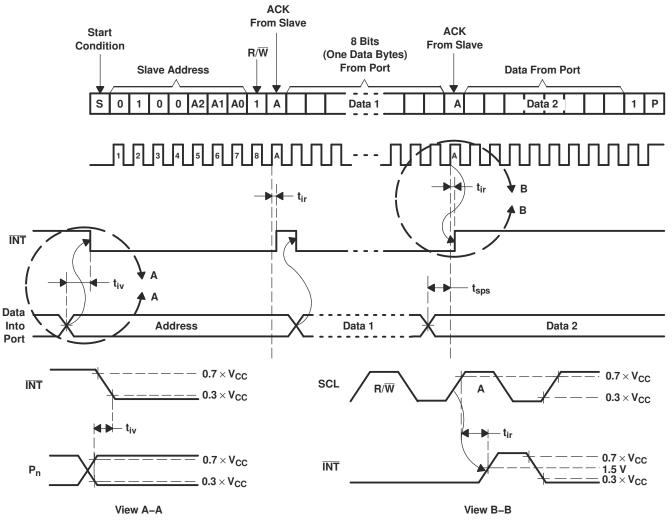
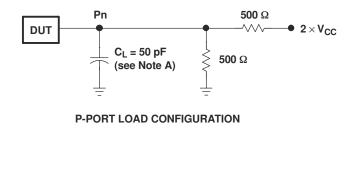
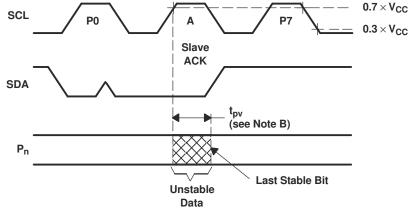
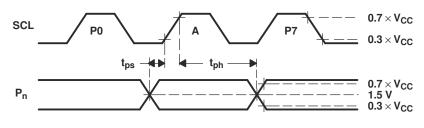

- A. C_L includes probe and jig capacitance.
- B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r/t_f \leq 30 ns.
- C. All parameters and waveforms are not applicable to all devices.

图 7-1. I²C Interface Load Circuit And Voltage Waveforms


A. C_L includes probe and jig capacitance.


B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r/t_f \leq 30 ns.

C. All parameters and waveforms are not applicable to all devices.


图 7-2. Interrupt Load Circuit And Voltage Waveforms

WRITE MODE $(R/\overline{W} = 0)$

READ MODE (R/W = 1)

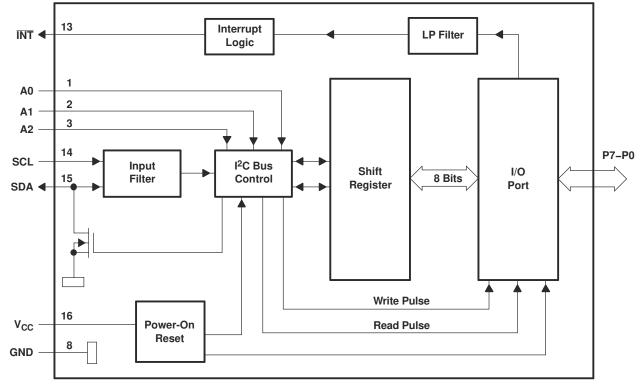
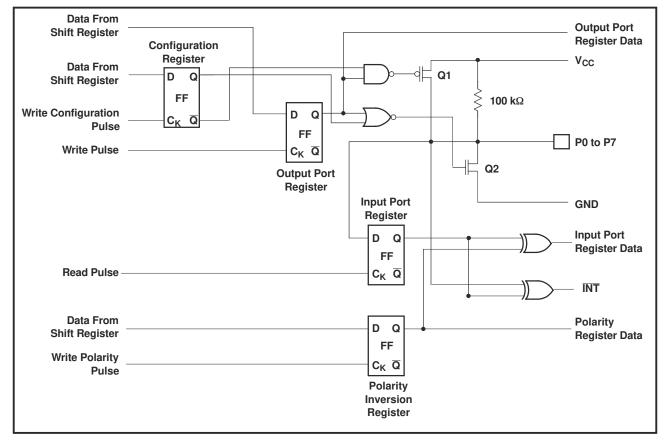

- A. C_L includes probe and jig capacitance.
- B. t_{pv} is measured from 0.7 × V_{CC} on SCL to 50% I/O pin output.
- C. All inputs are supplied by generators having the following characteristics: PRR \leqslant 10 MHz, Z_{0} = 50 $\Omega,$ t_{r}/t_{f} \leqslant 30 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

图 7-3. P-Port Load Circuit And Voltage Waveforms

8 Detailed Description

8.1 Functional Block Diagram



A. Pin numbers shown are for the DB, DBQ, DGV, DW, N, or PW package.

B. All I/Os are set to inputs at reset.

图 8-1. Logic Diagram

A. At power-on reset, all registers return to default values.

图 8-2. Simplified Schematic Of P0 To P7

8.2 Device Functional Modes

8.2.1 Power-On Reset

When power (from 0 V) is applied to V_{CC}, an internal power-on reset holds the PCA9554 in a reset condition until V_{CC} has reached V_{POR}. At that point, the reset condition is released and the PCA9554 registers and I²C/SMBus state machine initialize to their default states. After that, V_{CC} must be lowered to below 0.2 V and then back up to the operating voltage for a power-reset cycle.

8.2.2 I/O Port

When an I/O is configured as an input, FETs Q1 and Q2 (in \mathbb{X} 8-2) are off, which creates a high-impedance input with a weak pullup (100 k Ω typ) to V_{CC}. The input voltage may be raised above V_{CC} to a maximum of 5.5 V.

If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the output port register. In this case, there are low-impedance paths between the I/O pin and either V_{CC} or GND. The external voltage applied to this I/O pin should not exceed the recommended levels for proper operation.

8.2.3 Interrupt Output (INT)

An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time, t_{iv} , the signal \overline{INT} is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original setting, data is read from the port that generated the interrupt. Resetting occurs in the read mode at the acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal.

Interrupts that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and is transmitted as \overline{INT} . Writing to another device does not affect the interrupt circuit, and a pin configured as an output cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur, if the state of the pin does not match the contents of the Input Port register. Because each 8-pin port is read independently, the interrupt caused by port 0 is not cleared by a read of port 1 or vice versa.

The \overline{INT} output has an open-drain structure and requires pullup resistor to V_{CC}.

8.2.3.1 Interrupt Errata

Description

The INT will be improperly de-asserted if the following two conditions occur:

1. The last I²C command byte (register pointer) written to the device was 00h.

Note

This generally means the last operation with the device was a Read of the input register. However, the command byte may have been written with 00h without ever going on to read the input register. After reading from the device, if no other command byte written, it will remain 00h.

2. Any other slave device on the I²C bus acknowledges an address byte with the R/W bit set high

8.2.3.1.1

System Impact

Can cause improper interrupt handling as the Master will see the interrupt as being cleared.

8.2.3.1.2

System Workaround

Minor software change: User must change command byte to something besides 00h after a Read operation to the PCA9554 device or before reading from another slave device.

Note

Software change will be compatible with other versions (competition and TI redesigns) of this device.

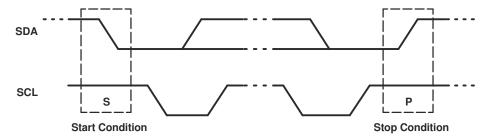
8.3 Programming

8.3.1 I²C Interface

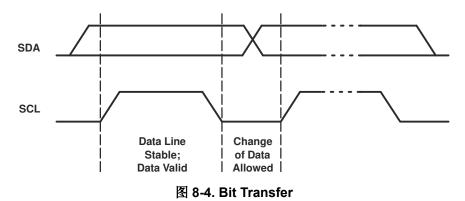
The bidirectional I²C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply through a pullup resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

 I^2C communication with this device is initiated by a master sending a start condition, a high-to-low transition on the SDA input/output while the SCL input is high (see \mathbb{R} 8-3). After the start condition, the device address byte is sent, MSB first, including the data direction bit (\mathbb{R}/\overline{W}).

After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/ output during the high of the ACK-related clock pulse. The address inputs (A0 – A2) of the slave device must not be changed between the start and the stop conditions.



On the I^2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (start or stop) (see 8 8-4).


A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see 8 8-3).

Any number of data bytes can be transferred from the transmitter to the receiver between the start and the stop conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see 8 8-5). When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold times must be met to ensure proper operation.

A master receiver will signal an end of data to the slave transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a Stop condition.

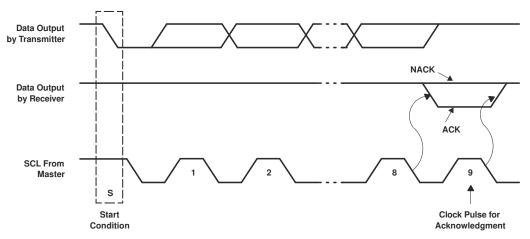
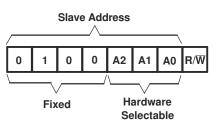


图 8-5. Acknowledgment On The I²C Bus


8.3.2 Register Map


BYTE				BIT				
DITE	7 (MSB)	6	5	4	3	2	1	0 (LSB)
I ² C slave address	L	Н	L	L	A2	A1	A0	R/W
Px I/O data bus	P7	P6	P5	P4	P3	P2	P1	P0

表 8-1. Interface Definition

8.3.2.1 Device Address

8-6 shows the address byte for the PCA9554.

表 8-2. Address Reference

	INPUTS		I ² C BUS SLAVE ADDRESS
A2	A1	A0	I C BUS SLAVE ADDRESS
L	L	L	32 (decimal), 20 (hexadecimal)
L	L	Н	33 (decimal), 21 (hexadecimal)
L	Н	L	34 (decimal), 22 (hexadecimal)
L	Н	Н	35 (decimal), 23 (hexadecimal)
Н	L	L	36 (decimal), 24 (hexadecimal)
Н	L	Н	37 (decimal), 25 (hexadecimal)
Н	Н	L	38 (decimal), 26 (hexadecimal)
Н	Н	Н	39 (decimal), 27 (hexadecimal)

The last bit of the slave address defines the operation (read or write) to be performed. When it is high (1), a read is selected, while a low (0) selects a write operation.

8.3.2.2 Control Register And Command Byte

Following the successful acknowledgment of the address byte, the bus master sends a command byte that is stored in the control register in the PCA9554. Two bits of this command byte state the operation (read or write) and the internal register (input, output, polarity inversion or configuration) that will be affected. This register can be written or read through the l^2C bus. The command byte is sent only during a write transmission.

Once a command byte has been sent, the register that was addressed continues to be accessed by readsuntil a new command byte has been sent.

0	0	0	0	0	0	B1	B0	
---	---	---	---	---	---	----	----	--

图 8-7. Control Register Bits

CONTROL RE	EGISTER BITS	COMMAND BYTE	REGISTER	PROTOCOL	POWER-UP
B1	B0	(HEX)	REGISTER	FROTOCOL	DEFAULT
0	0	0x00	Input Port Register	Read byte	XXXX XXXX
0	1	0x01	Output Port Register	Read/write byte	1111 1111
1	0	0x02	Polarity Inversion Register	Read/write byte	0000 0000
1	1	0x03	Configuration Register	Read/write byte	1111 1111

表 8-3. Command Byte

8.3.2.3 Register Descriptions

The Input Port register (register 0) reflects the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by the Configuration register. It only acts on read operation. Writes to these registers have no effect. The default value, X, is determined by the externally applied logic level.

Before a read operation, a write transmission is sent with the command byte to indicate to the I²C device that the Input Port register will be accessed next.

表 8-4. Register 0 (Input Port Register) Table

BIT	17	16	15	14	13	12	l1	10
DEFAULT	Х	Х	Х	Х	Х	Х	Х	Х

The Output Port register (register 1) shows the outgoing logic levels of the pins defined as outputs by the Configuration register. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this register reflect the value that is in the flip-flop controlling the output selection, not the actual pin value.

表 8-5. Register	1 (Output Port	t Register) Table

	•••	- J	1		- J	,		
BIT	07	O6	O5	O4	O3	O2	01	00
DEFAULT	1	1	1	1	1	1	1	1

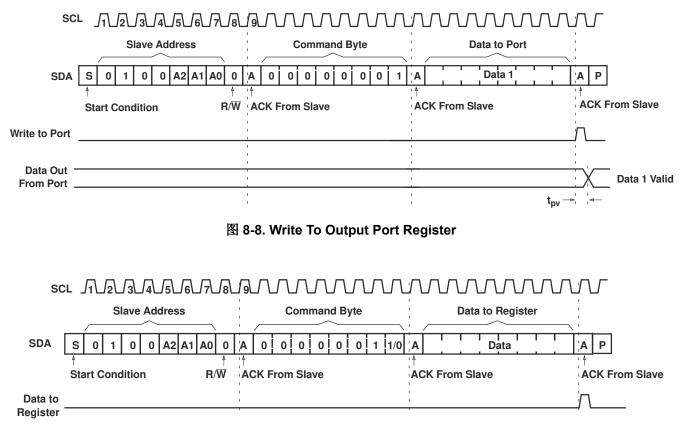
The Polarity Inversion register (register 2) allows polarity inversion of pins defined as inputs by the Configuration register. If a bit in this register is set (written with 1), the corresponding port pin polarity is inverted. If a bit in this register is cleared (written with a 0), the corresponding port pin's original polarity is retained.

	0-0.100		(i blanty	11140131	on Regi	ster) rat		
BIT	N7	N6	N5	N4	N3	N2	N1	N0
DEFAULT	0	0	0	0	0	0	0	0

表 8-6. Register 2 (Polarity Inversion Register) Table

The Configuration register (register 3) configures the directions of the I/O pins. If a bit in this register is set to 1, the corresponding port pin is enabled as an input with high impedance output driver. If a bit in this register is cleared to 0, the corresponding port pin is enabled as an output.

表 8-7. Register 3 (Configuration Register) Table
--


	•	<u> </u>	•	0	U	,		
BIT	C7	C6	C5	C4	C3	C2	C1	C0
DEFAULT	1	1	1	1	1	1	1	1

8.3.2.4 Bus Transactions

Data is exchanged between the master and PCA9554 through write and read commands.

8.3.2.4.1 Writes

Data is transmitted to the PCA9554 by sending the device address and setting the least-significant bit to a logic 0 (see \mathbb{R} 8-6 for device address). The command byte is sent after the address and determines which register receives the data that follows the command byte. There is no limitation on the number of data bytes sent in one write transmission.

8.3.2.4.2 Reads

The bus master first must send the PCA9554 address with the least-significant bit set to a logic 0 (see 🛛 8-6 for device address). The command byte is sent after the address and determines which register is accessed. After a restart, the device address is sent again but, this time, the least-significant bit is set to a logic 1. Data from the register defined by the command byte then is sent by the PCA9554 (see 🖾 8-10 and 🖾 8-11). After a restart, the value of the register defined by the command byte matches the register being accessed when the restart occurred. Data is clocked into the register on the rising edge of the ACK clock pulse. There is no limitation on the number of data bytes received in one read transmission, but when the final byte is received, the bus master must not acknowledge the data

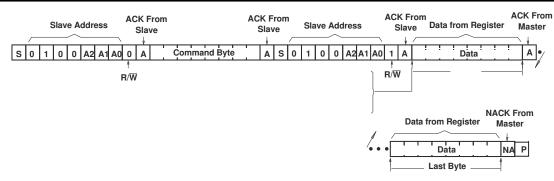
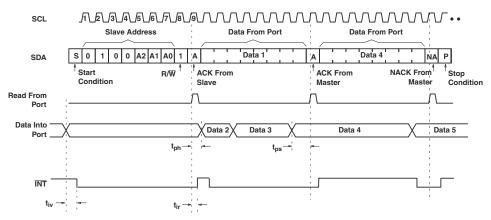
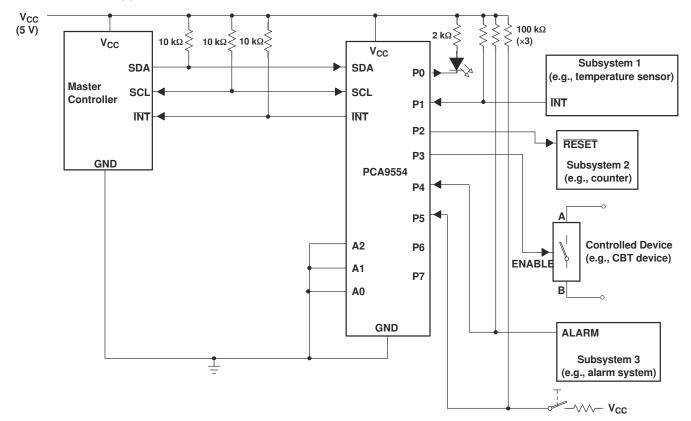



图 8-10. Read From Register

- A. This figure assumes the command byte has previously been programmed with 00h.
- B. Transfer of data can be stopped at any moment by a Stop condition.
- C. This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address call and actual data transfer from P port. See 🛽 8-10 for these details.

图 8-11. Read From Input Port Register

9 Application Information Disclaimer


Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Typical Application

图 9-1 shows an application in which the PCA9554 can be used.

- A. Device address is configured as 0100000 for this example.
- B. P0, P2, and P3 are configured as outputs.
- C. P1, P4, and P5 are configured as inputs.
- D. P6 and P7 are not used and have internal 100-kΩ pullup resistors to protect them from floating.

图 9-1. Typical Application

9.1.1.1 Design Requirements

9.1.1.1.1 Minimizing I_{CC} When I/Os Control Leds

When the I/Os are used to control LEDs, they are normally connected to V_{CC} through a resistor as shown in 9-1. The LED acts as a diode, so when the LED is off, the I/O V_{IN} is about 1.2 V less than V_{CC} . $\triangle I_{CC}$ in *Electrical Characteristics* shows how I_{CC} increases as V_{IN} becomes lower than V_{CC} .

For battery-powered applications, it is essential that the voltage of I/O pins is greater than or equal to V_{CC} when the LED is off to minimize current consumption. [8] 9-2 shows a high-value resistor in parallel with the LED. [8] 9-3 shows V_{CC} less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V_{IN} at or above V_{CC} and prevent additional supply-current consumption when the LED is off.

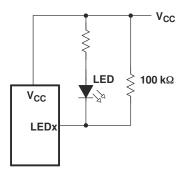


图 9-2. High-Value Resistor In Parallel With Led

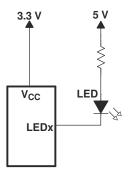


图 9-3. Device Supplied By A Lower Voltage

10 Power Supply Recommendations

10.1 Power-On Reset Requirements

In the event of a glitch or data corruption, PCA9554 can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

The two types of power-on reset are shown in $\underline{\mathbb{N}}$ 10-1 and $\underline{\mathbb{N}}$ 10-2.

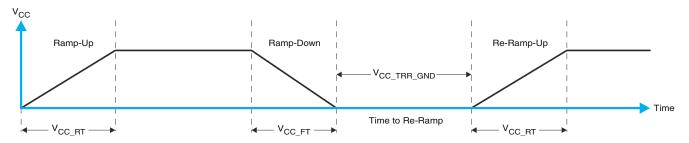


图 10-1. V_{CC} Is Lowered Below 0.2 V Or 0 V And Then Ramped Up To V_{CC}

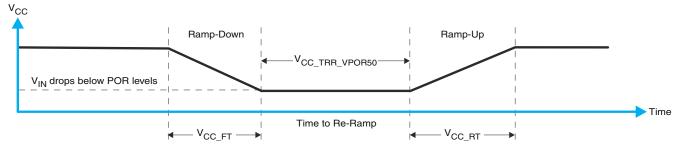


图 10-2. V_{CC} Is Lowered Below The Por Threshold, Then Ramped Back Up To V_{CC}

表 10-1 specifies the performance of the power-on reset feature for PCA9554 for both types of power-on reset.

	PARAMETER		MIN	TYP	MAX	UNIT
V _{CC_FT}	Fall rate	See 图 10-1	1		100	ms
V _{CC_RT}	Rise rate	See 图 10-1	0.01		100	ms
V _{CC_TRR_GND}	Time to re-ramp (when V _{CC} drops to GND)	See 图 10-1	0.001			ms
V _{CC_TRR_POR50}	Time to re-ramp (when V _{CC} drops to V _{POR_MIN} $-$ 50 mV)	See 图 10-2	0.001			ms
V _{CC_GH}	Level that V_{CCP} can glitch down to, but not cause a functional disruption when $V_{CCX_{GW}}$ = 1 μ s	See 图 10-3			1.2	V
V _{CC_GW}	Glitch width that will not cause a functional disruption when V_{CCX_GH} = 0.5 × V_{CCx}	See 图 10-3				μs
V _{PORF}	Voltage trip point of POR on falling V _{CC}		0.767		1.144	V
V _{PORR}	Voltage trip point of POR on rising V_{CC}		1.033		1.428	V

表 10-1. Recommended Supply Sequencing And Ramp Rates⁽¹⁾

(1) $T_A = -40^{\circ}C$ to 85°C (unless otherwise noted)

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width (V_{CC_GW}) and height (V_{CC_GH}) are dependent on each other. The bypass capacitance, source impedance, and the device impedance are factors that affect power-on reset performance. \boxtimes 10-3 and $\stackrel{}{_{\sim}}$ 10-1 provide more information on how to measure these specifications.

图 10-3. Glitch Width And Glitch Height

 V_{POR} is critical to the power-on reset. V_{POR} is the voltage level at which the reset condition is released and all the registers and the I²C/SMBus state machine are initialized to their default states. The value of V_{POR} differs based on the V_{CC} being lowered to or from 0. [8] 10-4 and \gtrsim 10-1 provide more details on this specification.

图 10-4. V_{POR}

11 Device and Documentation Support

11.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.2 Support Resources

TI E2E^m support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。

11.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)			(· · · /	
PCA9554DB	ACTIVE	SSOP	DB	16	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD554	Samples
PCA9554DBR	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD554	Samples
PCA9554DGVR	ACTIVE	TVSOP	DGV	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD554	Samples
PCA9554DW	ACTIVE	SOIC	DW	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCA9554	Samples
PCA9554DWR	ACTIVE	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCA9554	Samples
PCA9554PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD554	Samples
PCA9554PWRG4	ACTIVE	TSSOP	PW	16	2000	TBD	Call TI	Call TI	-40 to 85		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

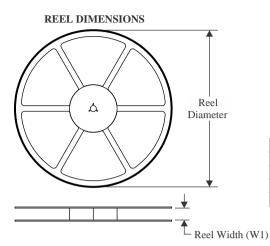
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

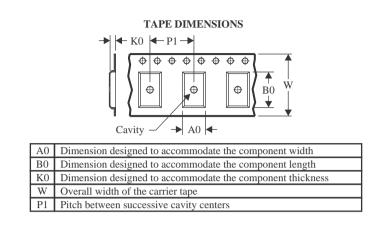
www.ti.com

PACKAGE OPTION ADDENDUM

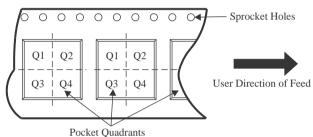
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

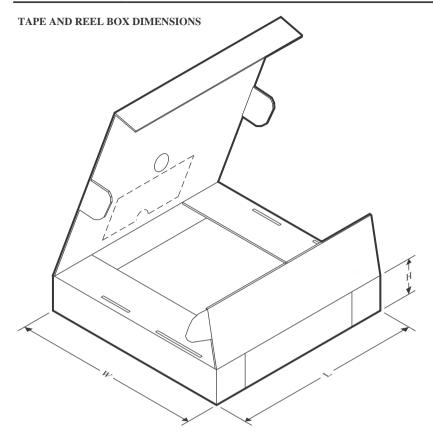


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

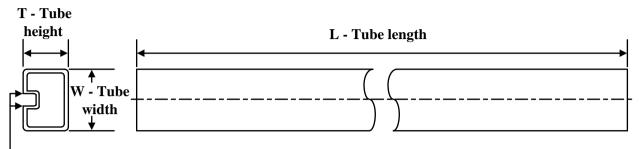

*All dimensions are nomina										r.		t.
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PCA9554DBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
PCA9554DGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
PCA9554DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
PCA9554PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
PCA9554PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Jun-2022

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PCA9554DBR	SSOP	DB	16	2000	356.0	356.0	35.0
PCA9554DGVR	TVSOP	DGV	16	2000	356.0	356.0	35.0
PCA9554DWR	SOIC	DW	16	2000	350.0	350.0	43.0
PCA9554PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
PCA9554PWR	TSSOP	PW	16	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

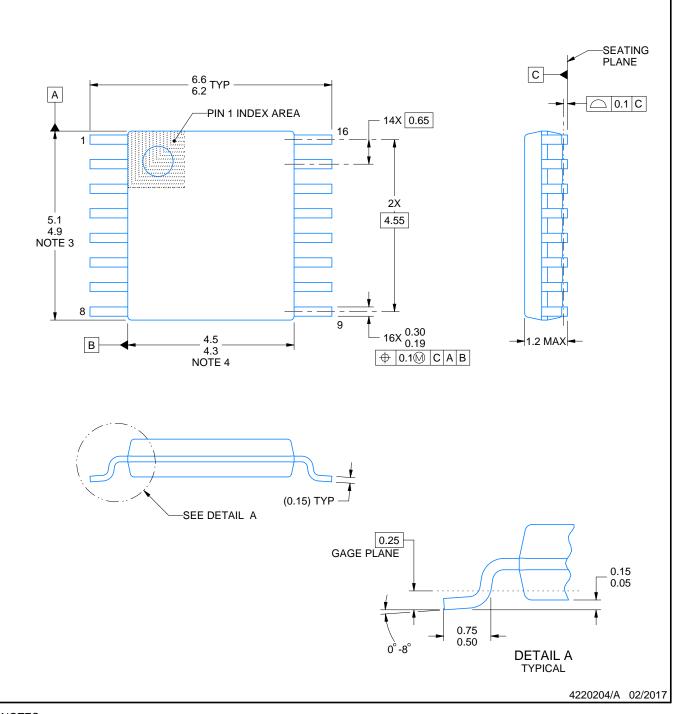
3-Jun-2022

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
PCA9554DB	DB	SSOP	16	80	530	10.5	4000	4.1
PCA9554DW	DW	SOIC	16	40	506.98	12.7	4826	6.6


PW0016A

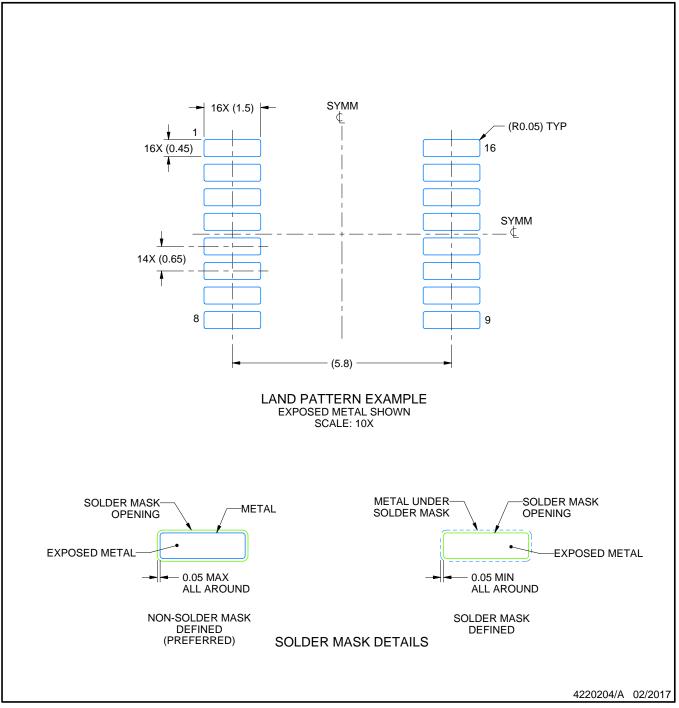
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

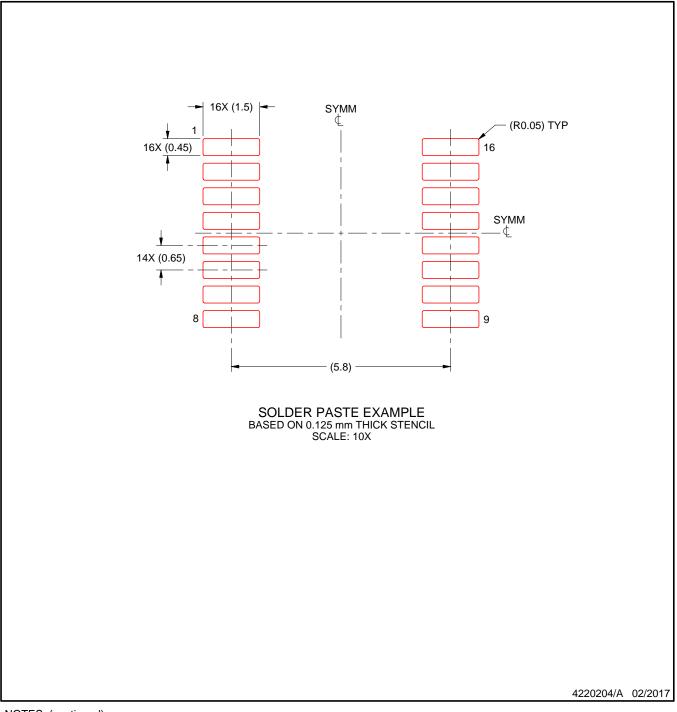
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

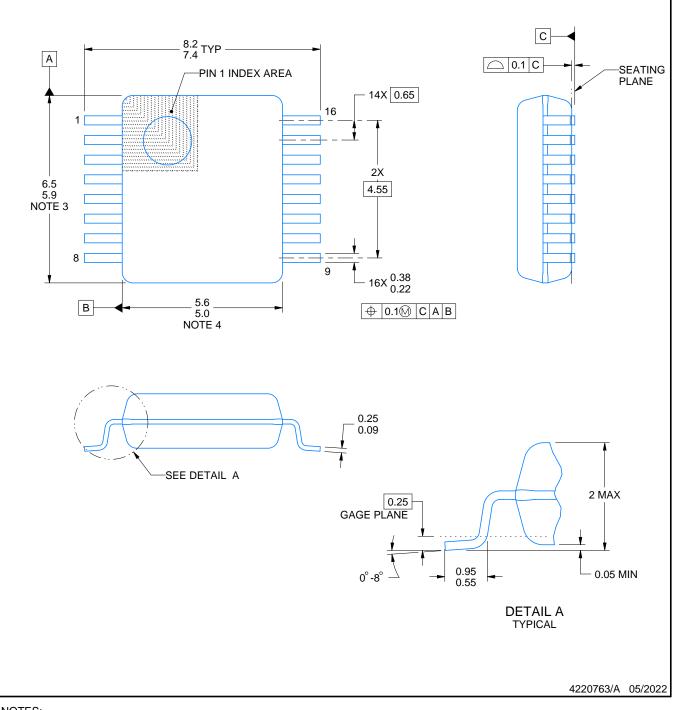
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DB0016A

PACKAGE OUTLINE

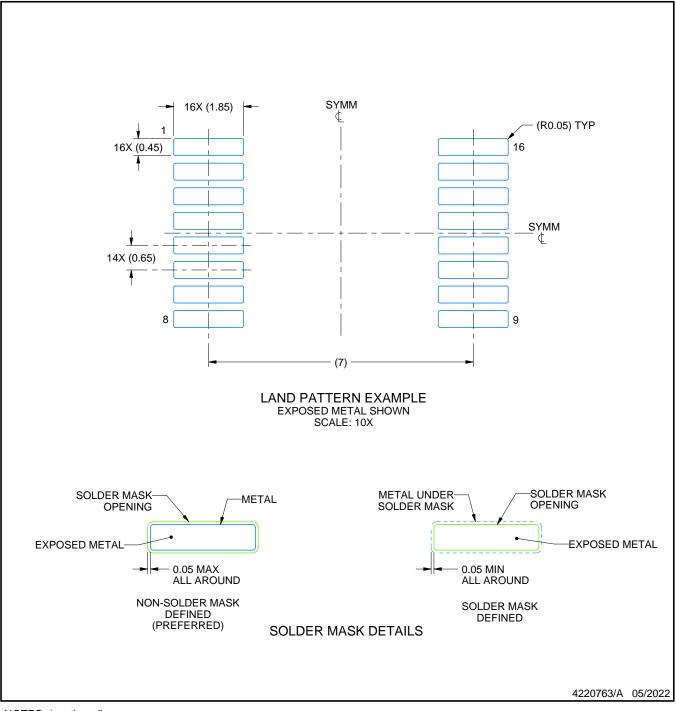
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-150.



DB0016A

EXAMPLE BOARD LAYOUT

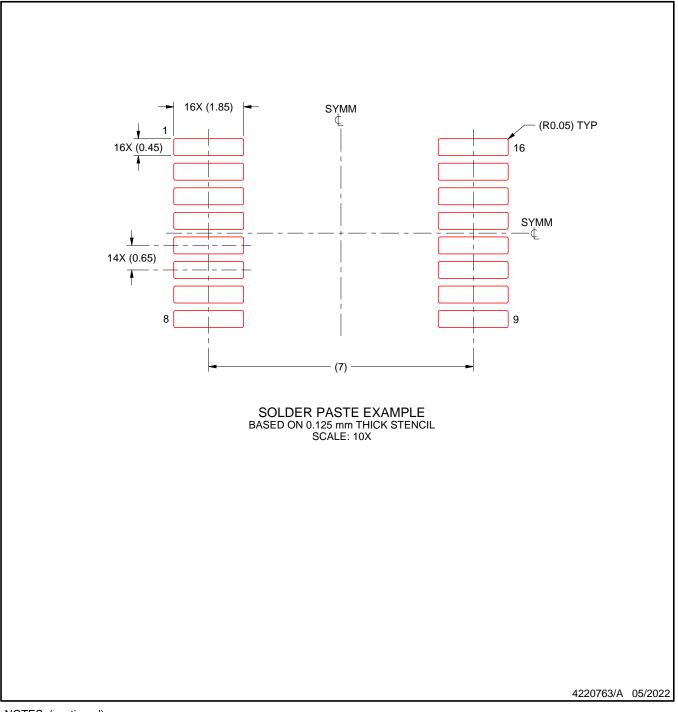
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0016A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

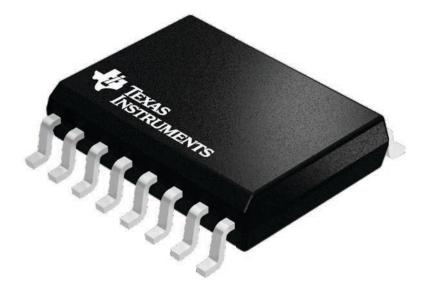
SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DW 16

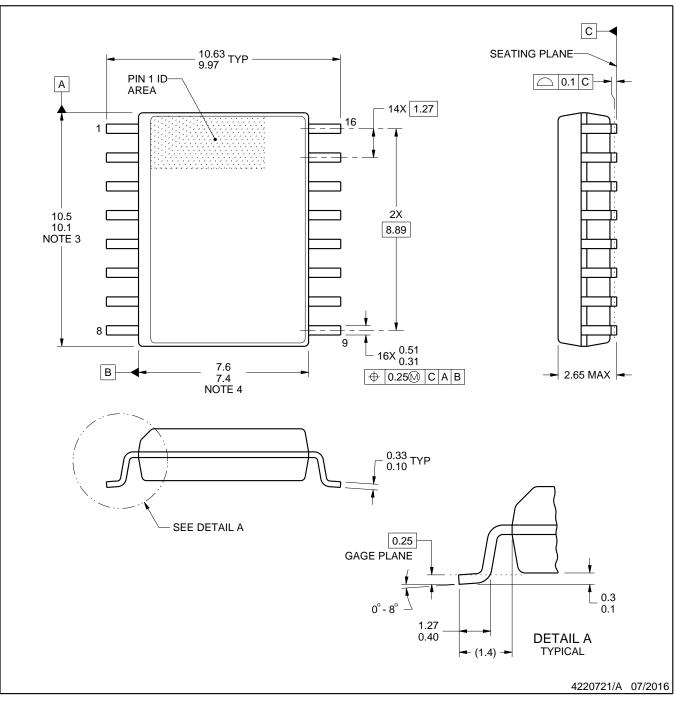

GENERIC PACKAGE VIEW

SOIC - 2.65 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

7.5 x 10.3, 1.27 mm pitch

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DW0016A

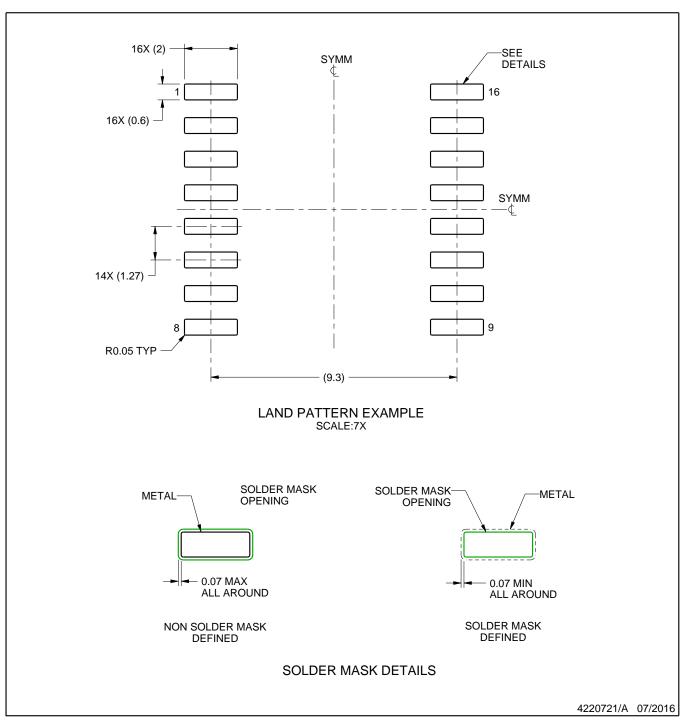
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.



DW0016A

EXAMPLE BOARD LAYOUT

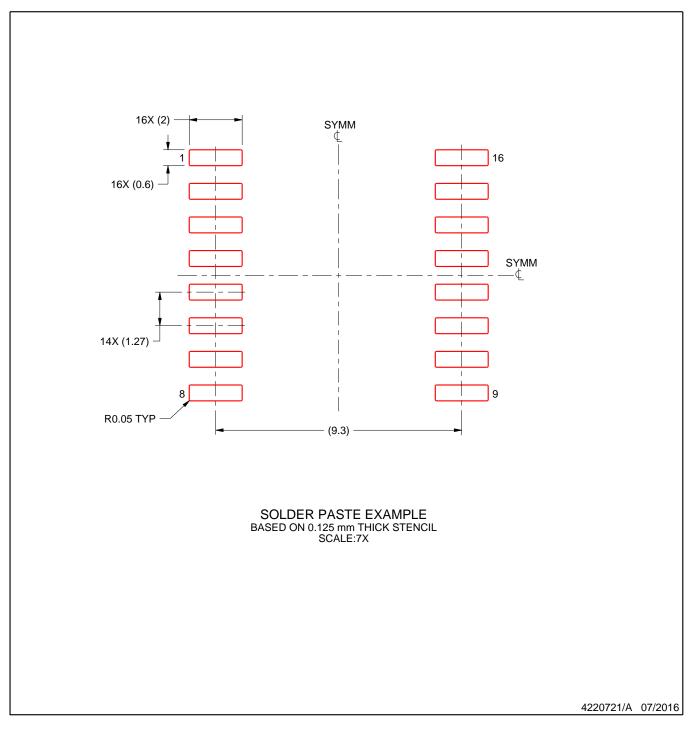
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0016A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司